PROPOSED REZONING FOR RESIDENTIAL SUBDIVISION

BUNDEENA ROAD AND BOTTLE BRUSH DRIVE, GLENNING VALLEY

> Assessment of Road and Traffic Implications

> > February 2011

Reference 10107

TRANSPORT AND TRAFFIC PLANNING ASSOCIATES Transportation, Traffic and Design Consultants Suite 502, Level 5 282 Victoria Avenue CHATSWOOD 2067 Telephone (02) 9411 5660 Facsimile (02) 9904 6622 Email: ttpa@ttpa.com.au

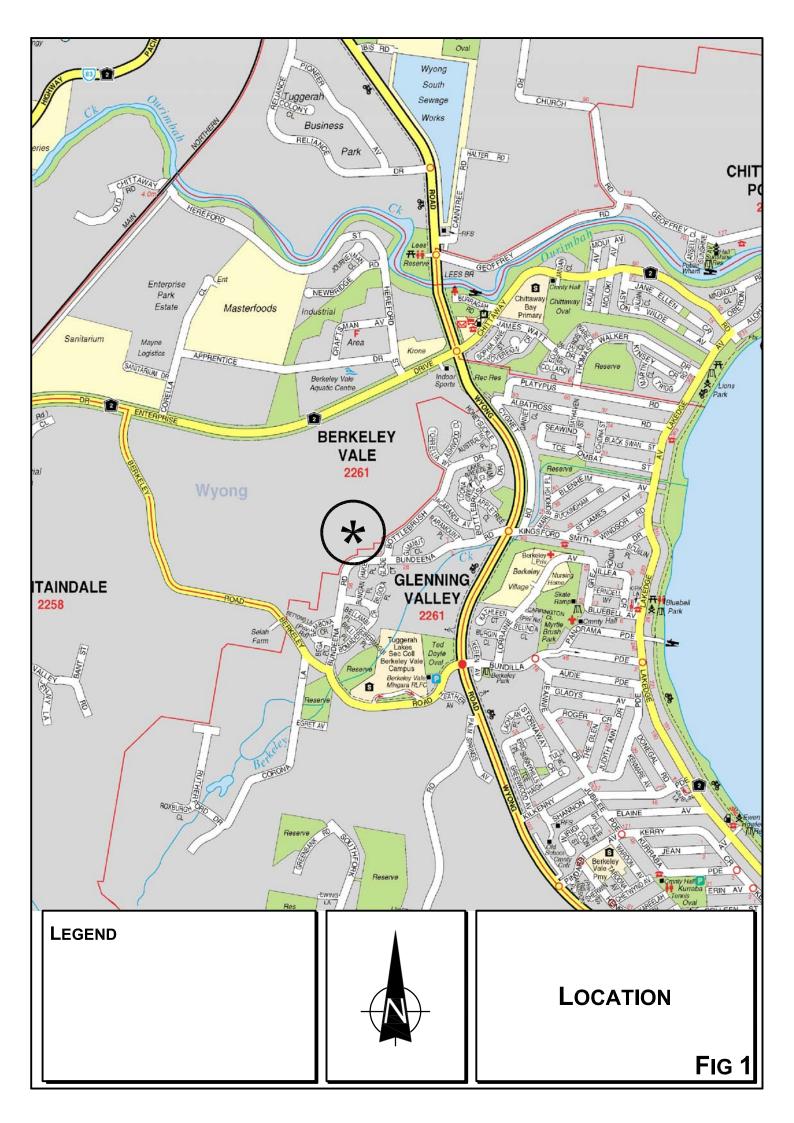
TABLE OF CONTENTS

1.	INTF		1
2.	PRC	POSED DEVELOPMENT SCHEME	2
	2.1 2.2	Site, Context and Existing Use Proposed Rezoning	2 3
3.	ROA	D NETWORK AND TRAFFIC CONDITIONS	5
	3.1 3.2 3.3 3.4 3.5 3.6	Road Network Road Geometry Traffic Controls Traffic Conditions Transport Services, Pedestrians and Cyclists Future Circumstances	6 7 7 8
4.	ENV	ISAGED SUBDIVISION ROAD SYSTEM	12
		Road System Access Connections Traffic Management and Safety	12
5.	TRA	FFIC IMPLICATIONS	13
6.	TRA	NSPORT SERVICES, PEDESTRIANS AND CYCLISTS	15
7.	SER	VICING	16
8.	CON	ICLUSION	17

APPENDIX ATRAFFIC SURVEY RESULTSAPPENDIX BBUS SERVICESAPPENDIX CSIDRA RESULTS

LIST OF ILLUSTRATIONS

FIGURE 1	LOCATION
FIGURE 2	SITE
FIGURE 3	ROAD NETWORK
FIGURE 4	TRAFFIC CONTROLS


1. INTRODUCTION

This report has been prepared as part of the "Gateway" process for a proposed rezoning of land in Glenning Valley to permit residential subdivision (Fig 1). The "Lakes" area on the Central Coast is experiencing significant urban development due to its natural attributes and proximity to the Gosford and Wyong Regional centres.

The subject site is adjoined by existing residential subdivisions in the northern part of the Glenning Valley with convenient access to the arterial road system and bus services as well as the railway stations at Wyong and Ourimbah. The proposed rezoning would permit a subdivision of some 400 lots with access road systems connecting to Bundeena Road and Bottlebrush Drive.

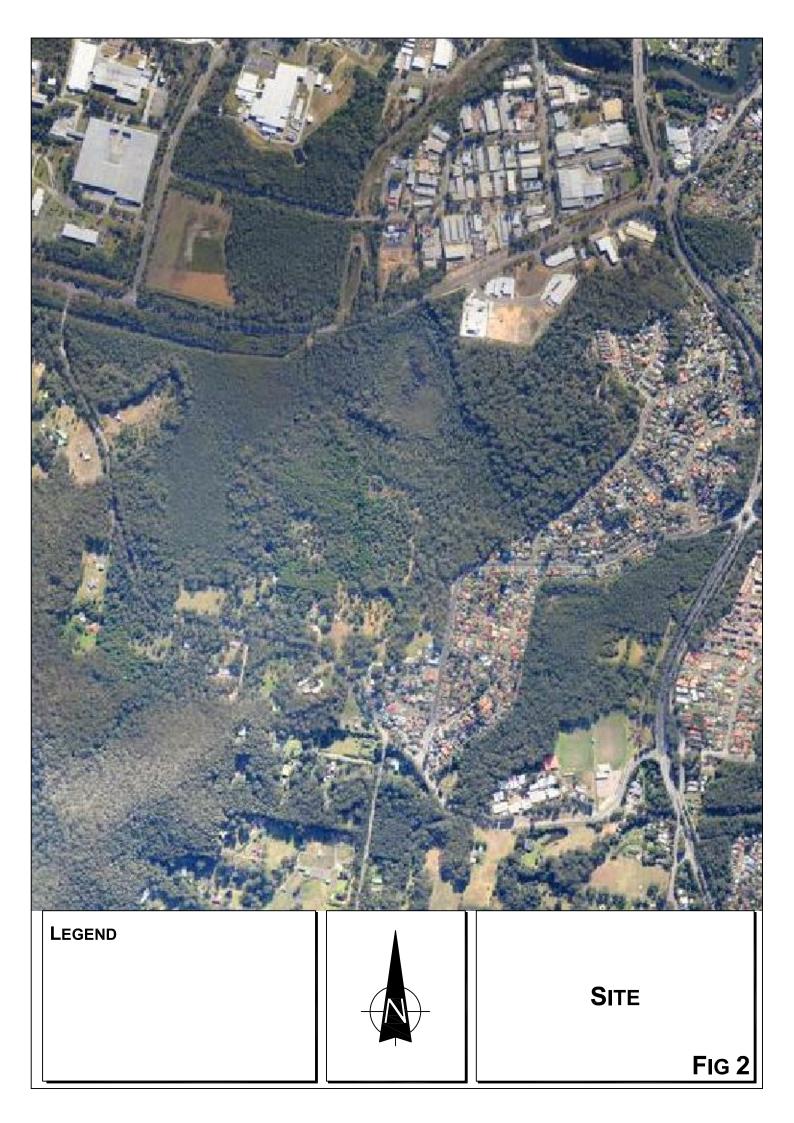
The purpose of this report is to:

- * describe the site and the envisaged subdivision subject to the rezoning
- provide an assessment of the envisaged road geometry and road network access.
- provide an assessment of the potential traffic implications of subdivision development
- provide an assessment of potential implications for walking, cycling and public transport services

2. PROPOSED DEVELOPMENT SCHEME

2.1 SITE, CONTEXT AND EXISTING USE

The site (Figure 2) is a consolidation of 5 lots occupying a total area of 50.065ha being:


Lot 2 in DP1100181	Pt Lot 413 in DP 868340
Lot 455 in DP786675	Pt Lot 414 in DP 868340
Lot 4 in DP1078468	Pt Lot 52 in DP 1039187
Lot 21 in DP740435	Pt Lot 1111 in DP 1143167
Lot 22 in DP740435	Pt Lot 1112 in DP 1143167
Lot 511 in DP 205919	
Lot 413 in 500951	

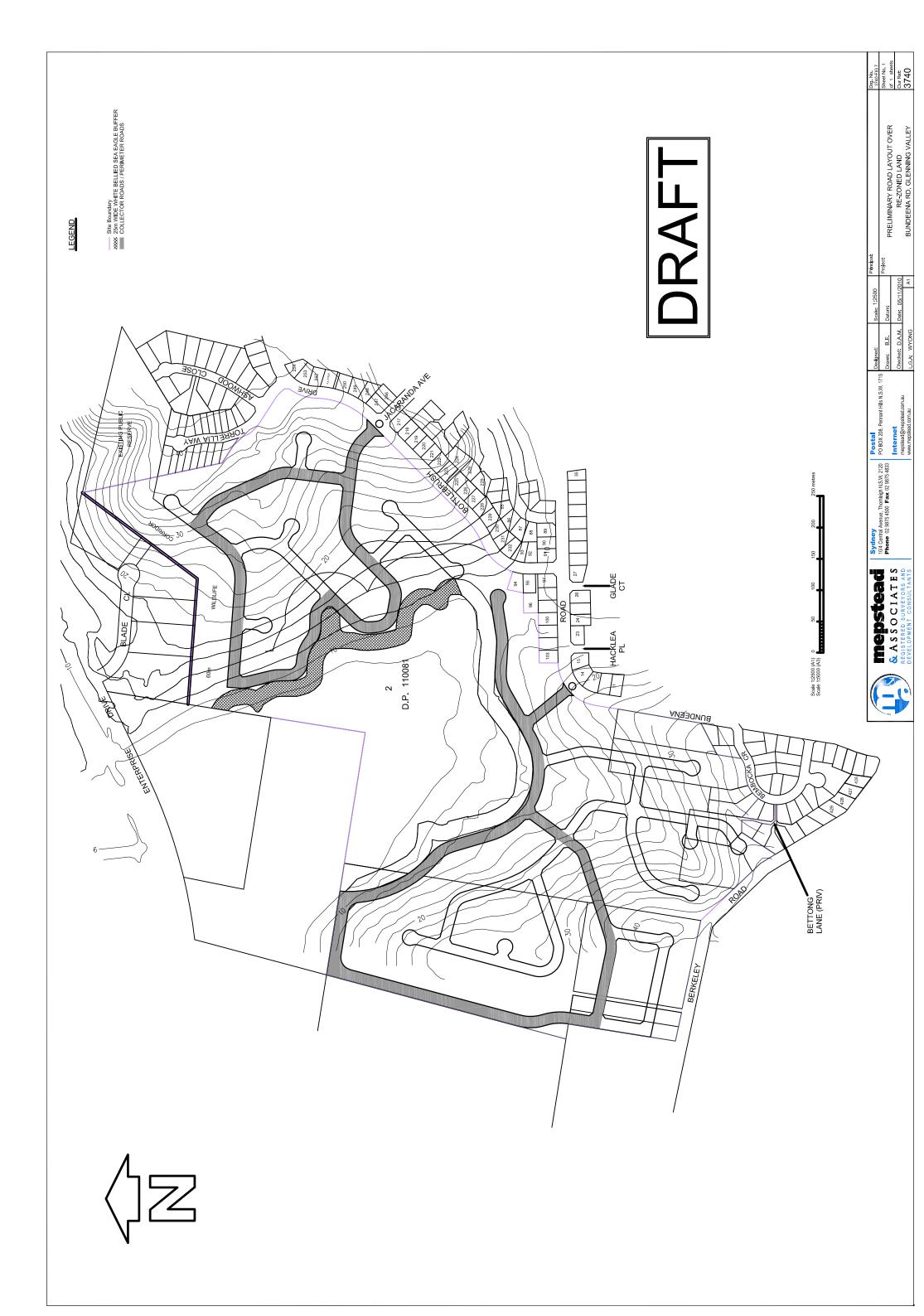
The site consists of open grassland with areas of forestation and there is a depression through the centre which facilitates drainage. The site has an extensive frontage to Bottlebrush Drive and lesser frontages to Berkeley Road, Bundeena Road and Torrellia Way.

The adjoining and surrounding uses comprise:

- * an industrial subdivision in the northern part with adjacent Public Reserve
- * residential subdivision in the north eastern part
- * residential lots along Bottlebrush Drive and Bundeena Road
- * rural properties along the western part

The small Berkeley Park Vale Centre is located just to the north east while there are large industrial uses to the north of Enterprise Drive and a number of nearby schools, educational facilities and aged persons accommodation.

2.2 PROPOSED REZONING

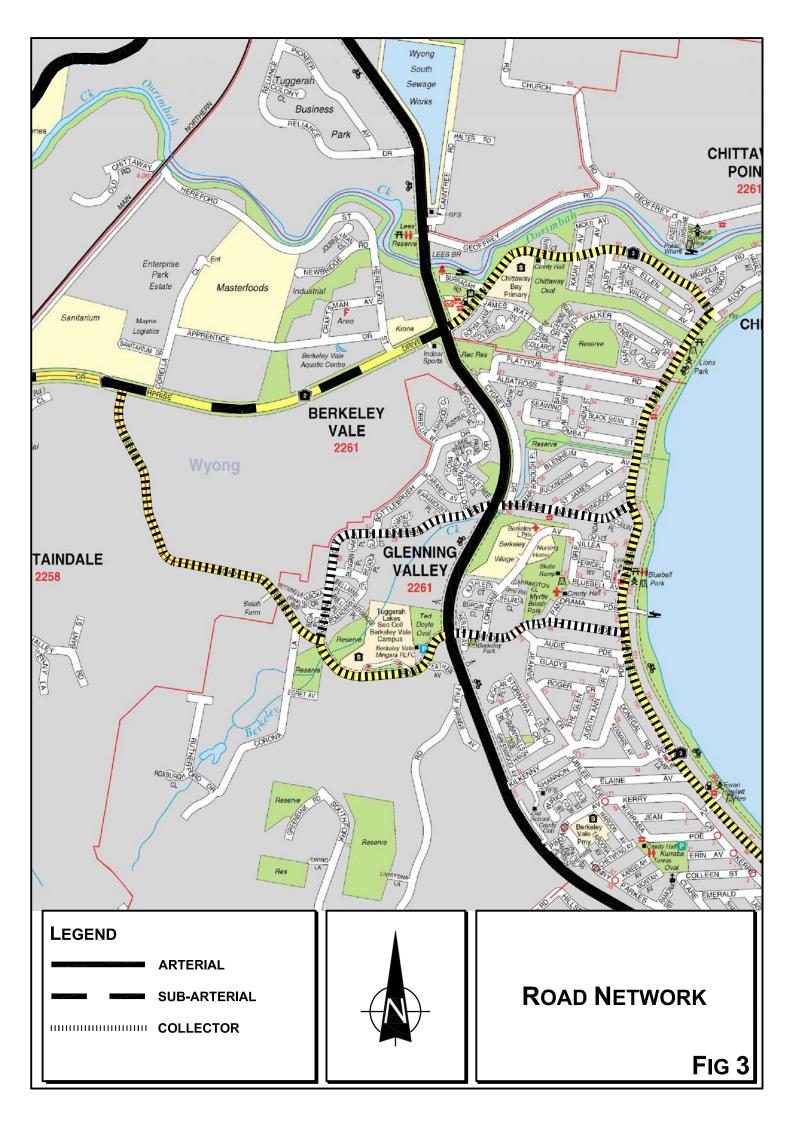

The envisaged subdivisions will occupy the north-eastern and north-western parts of the site having regard to the central forested gully area and buffers to the adjoining industrial land and Public Reserve along the northern boundary.

The two subdivision areas will not have road connection and will be separately accessed with:

- the north-eastern part having road connection to Bottlebrush Drive opposite
 Jacaranda Avenue
- the south-western part having road connection to Bundeena Road on the bend just to the west of Bottlebrush Drive
- a shared pedestrian/cycle network connecting through the site and the external network.

The north-eastern section will yield some 150 lots while the south-western section will yield some 250 lots. The subdivision road systems will reflect a traditional curvilinear alignment with numerous cul-de-sacs responding to the contours of the land and boundary circumstances.

Details of the proposal are provided on the plan prepared by Mepstead Associates which is reproduced overleaf.



3. ROAD NETWORK AND TRAFFIC CONDITIONS

3.1 ROAD NETWORK

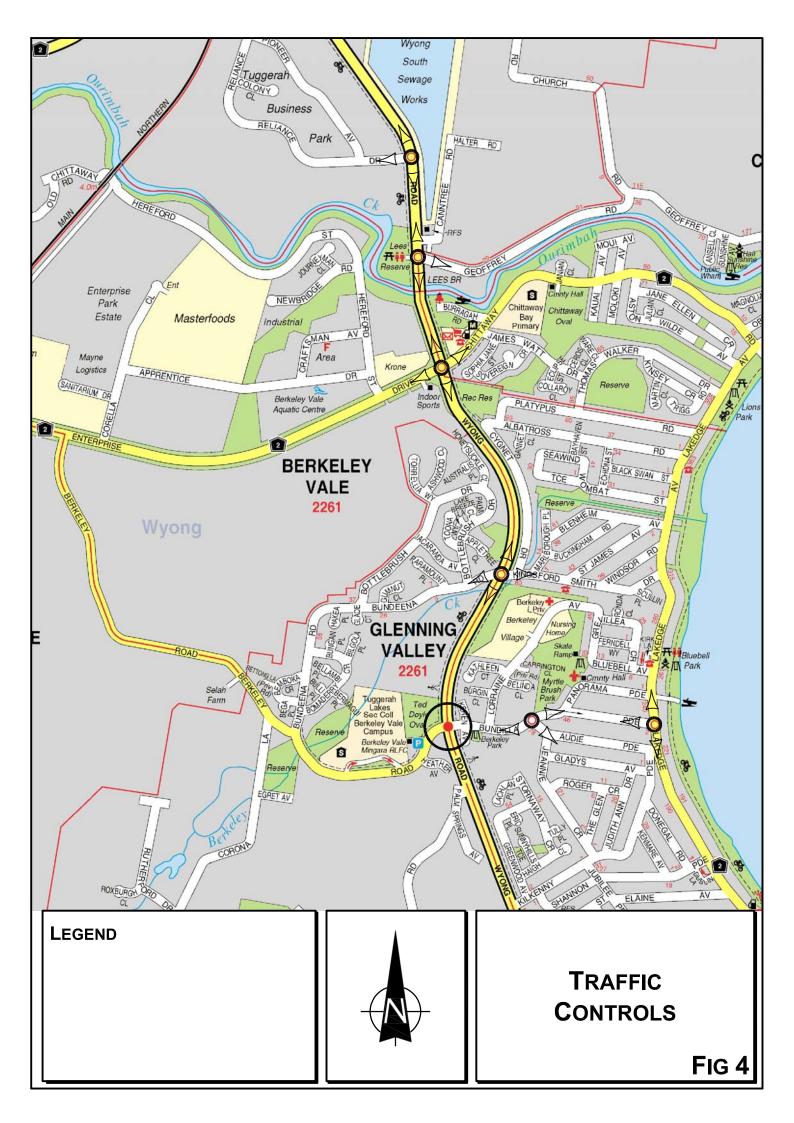
The road network serving the site (Figure 3) is framed around the north-south interstate routes of the F3 Freeway and Pacific Highway and the constraints presented by the Main Northern Railway Line, Tuggerah Lake and the Wyong River. The network comprises:

- F3 Freeway a principal arterial route which runs to the west of Wyong connecting between Sydney and New England Highway at Hexham
- Pacific Highway a arterial route which runs along the western side of the railway line in connecting between Gosford and Newcastle through Wyong
- Wyong Road a sub-arterial route which connects between the F3 interchange and The Entrance intersecting with the Highway at Tuggerah
- *Enterprise Drive* a sub-arterial road linking between the Pacific Highway at Ourimbah and Chittaway Bay
- *Berkeley Road* a collector route connecting between Enterprise Drive and Wyong Road
- *Bundeena Road* a minor collector route connecting between Berkeley Road and Wyong Road
- Bottlebrush Drive an access circuit connecting the northern part of Glenning Valley

3.2 ROAD GEOMETRY

The external road system of Bundeena Road and Bottlebrush Drive has a somewhat curvilinear alignment with some minor undulations. Both roads are some 13m wide with kerb and gutter both sides. Berkeley Road has a similar road geometry along its central and southern part but narrows to a 2 lane rural road into northern part.

3.3 TRAFFIC CONTROLS


The traffic controls on the road system in the vicinity of the site (Figure 4) comprise:

- * the roundabout at the intersection of Wyong Road / Enterprise Drive
- * the roundabout at the intersection of Wyong Road and Bundeena Road
- * the traffic control signal at the intersection of Wyong Road / Berkeley Road
- the 50 kph on the collector/local road system and 70 kph on the northern part of Berkeley Road
- * the "seagull" treatment at the Enterprise Drive/Berkeley Road intersection
- the GIVE WAY control on the northern arm of Berkeley Road at the Bundeena Road intersection

3.4 TRAFFIC CONDITIONS

An indication of the prevailing traffic conditions on the road system serving the site is provided by 7 day Average Daily Traffic as follows:

Wyong Road N of Enterprise Drive	35,266
Enterprise Drive W of Wyong Road	11,000 (est)

Traffic surveys have been undertaken at a number of intersections on the road system serving the site. The results of the surveys are summarised in the following:

		AM	PM
Enterprise Drive	EB	362	568
	RT	92	326
	WB	326	312
	LT	45	30
Berkeley Road	RT	73	16
	LT	502	146
Berkeley Road	EB	78	367
	LT	12	59
	WB	574	183
	RT	27	50
Bundeena Road	RT	55	29
	LT	36	23
Dundaana Daad		40	50
Bundeena Road	EB	49 7	53
	LT	7	15
	WB	86	60
	RT	3	7
Bottlebrush Drive	RT	25	6
(West)	LT	1	6
Bundeena Road	EB	73	54
	LT	-	8
	WB	47	85
	RT	43	73
Bottlebrush Drive	RT	12	1
(East)	LT	63	44

TRANSPORT AND TRAFFIC PLANNING ASSOCIATES

Wyong Road	NB	1592	776
	RT	5	3
	LT	29	29
	SB	596	1660
	RT	17	96
	LT	13	75
Bundeena Road	EB	8	17
	RT	21	25
	LT	92	71
Kingsford Smith Drive	e WB	90	40
	RT	31	45
	LT	28	21

The operational performance of these intersections has been assessed using SIDRA and the results are provided in Appendix B and summarised in the following while the criteria for interpreting SIDRA results is provided overleaf.

		AM		PM			
		LOS	DS	AVD	LOS	DS	AVD
Berkeley/Ente	erprise	A-B	0.346	10.1	A-D	0.335	7.5
Berkeley/Bun	deena W	А	0.049	2.1	А	0.038	2.1
Berkeley/Bun	deena E	А	0.078	4.4	А	0.103	4.2
Wyong/Bunde	eena	А	0.618	5.6	А	0.623	5.6
Berkeley/Bun	deena	А	0.340	8.6	A-B	0.640	11.3
					l		

3.5 TRANSPORT SERVICES, PEDESTRIAN & CYCLISTS TRANSPORT SERVICES

Bus services in the area are provided by Red Bus Services with three routes which operate along Bundeena Road and one service along Wyong Road as follows:

Route 14	 Wyong to Tuggerah Station (Bundeena Road)
Route 15	 Bay Village to Tuggerah Station (Wyong Road)
Route 24	 The Entrance to Wyong Hospital (Bundeena Road)
Route 25	 The Entrance to Wyong Plaza (Bottlebrush Drive)

Details of their services are provided in Appendix B and bus stops are located on both Bundeena Road and Bottlebrush Drive but without bus shelters. Their service provider has advised that the existing bus services are not heavily utilised and if extra capacity were required more frequent services could be introduced responding to demand created by additional housing in the area.

3.6 FUTURE CIRCUMSTANCES

The only future circumstance relevant to "traffic issues" in the planning assessment being undertaken by Council to upgrade intersections along the Wyong Road route.

Criteria for Interpreting Results of SIDRA Analysis

1. Level of Service (LOS)

LOS	Traffic Signals and Roundabouts	Give Way and Stop Signs
'A'	Good	Good
'B'	Good with acceptable delays and spare capacity	Acceptable delays and spare capacity
'C'	Satisfactory	Satisfactory but accident study required
'D'	Operating near capacity	Near capacity and accident study required
'E'	At capacity; at signals incidents will cause excessive delays. Roundabouts require other control mode	At capacity and requires other control mode
'F'	Unsatisfactory and requires additional capacity	Unsatisfactory and requires other control mode

2. Average Vehicle Delay (AVD)

The AVD provides a measure of the operational performance of an intersection as indicated on the table below which relates AVD to LOS. The AVD's listed in the table should be taken as a guide only as longer delays could be tolerated in some locations (ie inner city conditions) and on some roads (ie minor side street intersecting with a major arterial route).

Level of Service	Average Delay per Vehicle (secs/veh)	Traffic Signals, Roundabout	Give Way and Stop Signs
А	less than 14	Good operation	Good operation
В	15 to 28	Good with acceptable delays and spare capacity	Acceptable delays and spare capacity
С	29 to 42	Satisfactory	Satisfactory but accident study required
D	43 to 56	Operating near capacity	Near capacity and accident study required
E	57 to 70	At capacity; at signals incidents will cause excessive delays Roundabouts require other control mode	At capacity and requires other control mode

3. Degree of Saturation (DS)

The DS is another measure of the operational performance of individual intersections.

For intersections controlled by **traffic signals**¹ both queue length and delay increase rapidly as DS approaches 1, and it is usual to attempt to keep DS to less than 0.9. Values of DS in the order of 0.7 generally represent satisfactory intersection operation. When DS exceeds 0.9 queues can be anticipated.

For intersections controlled by a **roundabout or GIVE WAY or STOP signs**, satisfactory intersection operation is indicated by a DS of 0.8 or less.

¹ the values of DS for intersections under traffic signal control are only valid for cycle length of 120 secs

4. ENVISAGED SUBDIVISION ROAD SYSTEM

4.1 ROAD SYSTEM

The envisaged road system will adopt the design requirements of Councils DCP criteria and will reflect the nature of the other existing subdivisions in the area. The new subdivision roads will be curvilinear in alignment with numerous cul-de-sacs and roundabout control at cross intersections.

4.2 ACCESS CONNECTIONS

The proposed access connections on Bundeena Road and Bottlebrush Drive will incorporate mini-roundabout treatments. These intersections will be located where there are suitable sight distances available and the roundabout treatments will act to constrain vehicle speeds and assist pedestrian and cyclist crossings.

4.3 TRAFFIC MANAGEMENT AND SAFETY

The layout of the subdivision road continues the adopted principles of:

- * slight curvilinear alignment
- discontinuity (some with cul-de-sacs)
- ***** relatively limited 'straight line' travel and vehicle speeds.

The combination of these measures will achieve the objective of 30 - 40 kmph vehicle speed constraint as specified in the RTA Development Guidelines Section 7.2. At the same time the road system and its traffic management will facilitate the movement of service vehicles.

5. TRAFFIC IMPLICATIONS

There are a total of 202 existing occupied dwellings access by Bottlebrush Drive and the traffic surveys undertaken during the morning and afternoon peak periods recorded the various access movements. This data provides the following details:

Traffic Generation per dwelling:

AM – 0.76 vtph PM – 0.79 vtph

	AM	PM
IN FROM EAST	30%	50%
IN FROM WEST	4.5%	14.3%
OUT TO EAST	41.5%	31.4%
OUT TO WEST	24%	4.3%

Application of this criteria to the separate 250 and 150 lot areas the following access vehicle movements:

	Western Intersection			Eastern Intersection	
	AM	PM		AM	PM
RT IN	57	99	RT IN	34	59
LT IN	9	28	LT IN	5	17
RT OUT	46	8	RT OUT	28	5
LT OUT	79	62	LT OUT	47	37

The majority of generated vehicle movements will access the arterial road system through the Wyong Road/Bundeena Road intersection. Lesser movements will occur through the Wyong Road/Berkeley Road intersection (traffic signal control) and through the Enterprise Drive/Berkeley Road intersection (seagull island control).

The operational performance of the Wyong Road/Bundeena Road/Kingsford Smith Drive intersection with the additional movements generated by the developed subdivision has been assessed using SIDRA. The results of that assessment are provided in Appendix C and summarised in the following:

	AM	PM
LOS	А	А
DS	0.657	0.687
AVD	6.3	6.3

These results indicate that this intersection will continue to operate with a quite satisfactory level of service with some significant space capacity.

The Wyong Road/Berkeley Road and Enterprise Drive Berkeley Road intersections, as well as the intersections along Bundeena Road and Bottlebrush Drive will all operate quite satisfactorily due to the existing/proposed controls, the existing operational performances and the small additional traffic movements.

Environmental Impact

The RTA's Development Guidelines contains criteria in relation to traffic related environmental objectives. That criteria is reproduced in the following:

Road Class	Road Type	Max Speed kmph	Max Hourly Volume
Local	Accessway	25	100
	Street	40	200 goal
			300 maximum
Collector	Street	50	300 goal
			500 maximum

The traffic volume outcome for both the subdivision road system and the adjoining roads will be 'within keeping' of RTA Guidelines. As such there will be no unsatisfactory or inappropriate traffic related environmental outcomes, except that traffic to/from the northern subdivision would be divided along the short by steep section of Jacaranda Avenue connecting between the eastern and western sections of Bottlebrush Drive. It would be more appropriate for this traffic to travel along Bottlebrush Drive being a minor collector road with more gentle grades.

It would be necessary to apply traffic movement restrictions to the northern end of Jacaranda Avenue and this could involve:

- no egress
- * ingress for service and emergency vehicles only.

6. TRANSPORT SERVICES, PEDESTRIANS AND CYCLISTS

Transport Services

There are convenient existing bus services which run along Bundeena Road and Bottlebrush Drive although:

- * these services have limited frequency
- * the bus stops do not have shelters and could have improved access provisions
- the provision of a Stop adjacent to the new southern access intersection would be beneficial.

The increased patronage for the bus services generated by the additional houses in the envisaged subdivision would assist in supporting the existing services and to encourage more frequent services. It would be anticipated that correct conditions for the subdivision would require:

- ***** provision of bus shelters
- * provision of appropriate lighting and paved access
- ***** review of existing bus stop locations.

Pedestrians and Cyclists

It is envisaged that there would be an internal shared pedestrian/cyclist network which would link between and through the two subdivision areas. It is envisaged that this internal network would be connected to the existing external facilities along Berkeley Road and Wyong Road.

7. SERVICING

The proposed access road systems will facilitate the movements of service vehicles and particularly garbage removal being designed to accord with Councils DCP criteria.

The road width and intersection arrangements will accommodate the movements of 'large rigid trucks' including Fire Brigade vehicles.

8. CONCLUSION

The assessment provided in this report has concluded that the development of subdivisions subject to the proposed rezoning scheme will:

- not have any adverse traffic capacity, safety or environmental related implications
- * suitably provide for transport services, pedestrians, cyclists or service vehicles
- * not present any access or circulation difficulties for resident motorists.

APPENDIX A

TRAFFIC SURVEYS

R.O.A.R. DATA Reliable, Original & Authentic Results

Ph.88196847, Fax 88196849, Mob.0418-239019

AM

			—	—	T-	T	
		TOTAL	18	24	60	69	171
EAST	Budeena Rd	R	0	0	1	2	3
EA	Budee	н	9	7	40	33	86
NORTH	ottlebrush Dr West	Ľ	1	0	0	0	1
ION	Bottlebrush Dr West	RI N	2	7	5	11	25
NEST	ena Rd	I	8	6	11	21	49
WE	Bundeena Rd		1	1	3	2	7
All Vehicles		Time Per	0700 - 0715	0715 - 0730	0800 - 0815	0815 - 0830	Period End

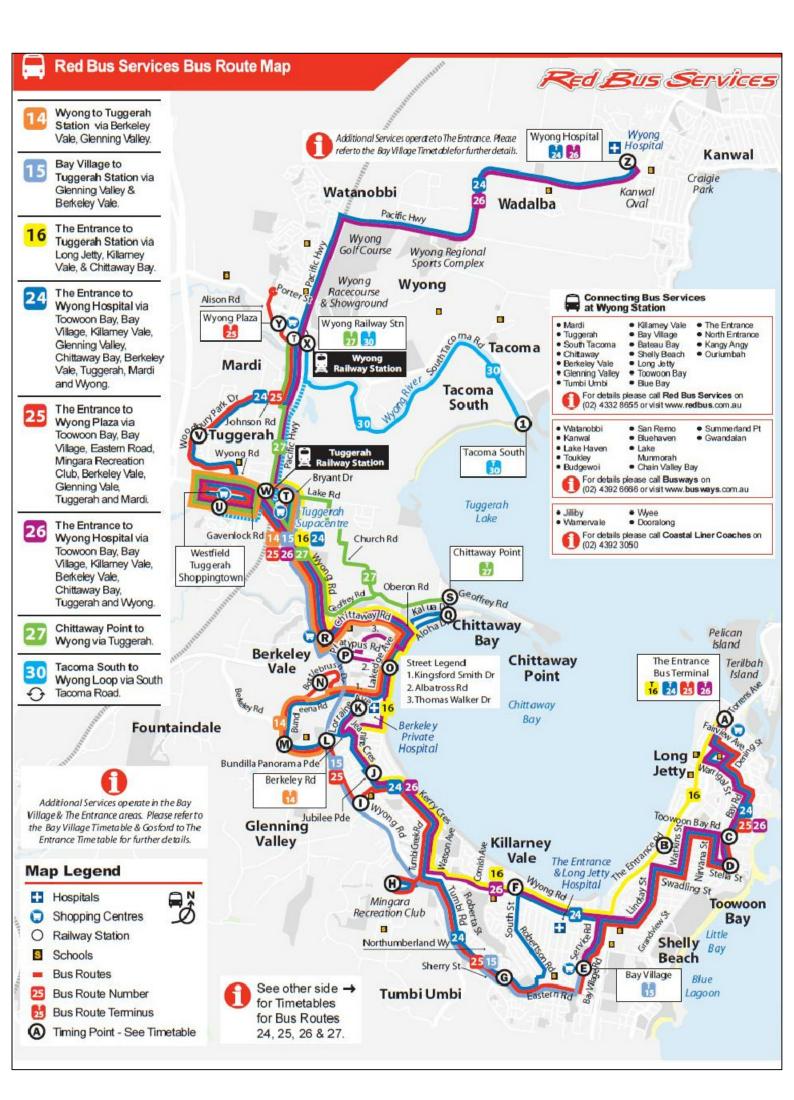
M

				Г	r i			Γ	Г	1
		TOTAL	33	31	38	41	33	35	211	
ST	na Rd	ъ	+	3	4	-	-	+	11	1
EAST	Budeena Rd	н	19	11	16	18	14	12	60	
КТН	brush /est		۲	0	e	1	0	2	7	
NORTH	Bottlebrush Dr West	2	2	2	1	2	1	2	10	
ST	ena Rd	I	6	12	11	15	12	15	74	1
WEST	Bundeena Rd	L	1	3	3	4	5	3	19	-
All Vehicles		Time Per	1500 - 1515	1515 - 1530	1600 - 1615	1615 - 1630	1700 - 1715	1715 - 1730	Period End	

* Note : House Occupied : 202 houses

: T.T.P.A Client

: 3298 BERKELY VALE Samples Count Job No/Name Day/Date


: Monday 20th September 2010


		TOTAL	62	58	63	55	238
ST	na Rd	ъ	10	7	13	13	43
EAST	Budeena Rd	ы	10	14	13	10	47
NORTH	brush ast	Ľ	17	14	19	13	63
ION	Bottlebrush Dr East	R	2	4	9	0	12
VEST	ena Rd	I	23	19	12	19	73
WE	Bundeena Rd	L	0	0	0	0	0
All Vehicles		Time Per	0730 - 0745	0745 - 0800	0830 - 0845	0845 - 0900	Period End

			-		-				-
		TOTAL	61	62	73	57	81	54	388
ST	na Rd	2	14	11	19	19	22	13	98
EAST	Budeena Rd	Т	23	26	20	19	26	20	134
NORTH	brush ast	Ľ	8	13	13	9	15	10	65
NOF	Bottlebrush Dr East	R	0	0	0	0	1	0	1
ST	ena Rd	Т	15	12	18	12	14	10	81
WEST	Bundeena Rd		1	0	3	1	3	1	6
All Vehicles		Time Per	1530 - 1545	1545 - 1600	1630 - 1645	1645 - 1700	1730 - 1745	1745 - 1800	Period End

APPENDIX B

BUS SERVICES

The Entrance (Toowoon Bay / Killarney Vale / Gienning Valley / Bereley Vale / Gietzway Bay / Tuggerah / March / Wyong / Taggerah / March / Wyong / See back for detailed route descriptions

The Éntrance

Buses operate in

Wyong to

on cell 4332 8655 or Red Bus intor

Red Bus Services Route Number 24 The Entrance to Wyong Hospital va

The Entrance to Wyong Hospital via Toward Bay Say Village Kannay View Carning Views Chitaway Bay Bahaary View Trugsarh Marti and Viyang

The Entrance to Wyong Plaza via Toowcon Bay, Bay Vitage, Eastern Road, Mingara Recreation Club, Berkteley Vale, Glenning Vale, Tuggerah and Mandi 22

The Erthance to Wyong Hospital via Toowcon Bay, Bay Village, Kitamey Vate Berkeley Vake, Chitaway Bay, Tuggerah 8

and Wyong.

Chittaway Point to Wyong via Tuggeral 5

Tacoma South to Wyong Loop via 80

bus times, fares and information www.redbus.com.au or call Transport Infoline on 131 500

In the same party of the second second second second second

10000000	
Entrance Incount & Early Village Incount & Early Village Incount & Early Village Incount of the Incount of the	
5, 26 & 27	
Explanations Distributions Distribu	
111111 111111	1 1
De Contra de Contra E Contra de Con	
Anyong valitary Vilage.	
	2010 전망 전망 집안되었다.(110 년 110 년 120 년 200 왕으로 200 년 110 년 110 년 111 년 1 1111 전망 전망 11 월2년 111 월2년 111 월2년 111 년 111 년 1111 전망 121 월2년 111 월2년 111 년 111
25, 26 8 27 26, 26 8 27 26, 26 4 26, 26 4 26, 26 4 26, 26 4 26, 26 4 27, 26 8 27 26, 26 4 27, 26 8 27 26, 26 4 27, 26 8 27 26, 27, 26 8 27 26, 27, 26 8 27 26, 26 4 27, 26 8 27 26, 27, 26 8 27 26, 26 4 27, 26 8 27 27, 26 8 27 26, 26 4 27, 26 8 27 27, 26 8 27 26, 26 4 27, 26 8 27 26, 26 4 26, 27, 26 8 27 27, 26 8 27 27, 26 8 27 20, 20 8 20 20, 20 8 20 2	

APPENDIX C

SIDRA RESULTS

Bundeena Road and Bottlebrush Drive East Existing AM Peak Giveway / Yield (Two-Way)

Mover	ment Per	formance -	Vehicles								
Mov ID		Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: R	RoadName				000		Ven			perven	
5	Т	49	0.0	0.059	0.3	LOS A	0.4	2.5	0.18	0.00	55.9
6	R	45	0.0	0.059	8.7	LOS A	0.4	2.5	0.18	0.80	48.4
Approa	ich	95	0.0	0.059	4.3	LOS A	0.4	2.5	0.18	0.38	52.1
North:	RoadNam	e									
7	L	66	0.0	0.078	8.8	LOS A	0.4	2.6	0.19	· 0.62	48.1
9	R	13	0.0	0.078	9.0	LOS A	0.4	2.6	0.19	0.71	47.9
Approa	ich	79	0.0	0.078	8.8	LOS A	0.4	2.6	0.19	0.63	48.1
West: F	RoadName)									
10	L	1	0.0	0.040	8.2	LOS A	0.0	0.0	0.00	1.08	49.0
11	Т	77	0.0	0.040	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	78	0.0	0.040	0.1	LOS A	0.0	0.0	0.00	0.01	59.8
All Veh	icles	252	0.0	0.078	4.4	NA	0.4	2.6	0.13	0.35	52.8

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS A. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on the worst delay for any vehicle movement.

Processed: Monday, 27 September 2010 10:49:31 AM SIDRA INTERSECTION 5.0.2.1437 Project: F:\WORK10\10107 - GLENNING VALLEY SUBDIVISION\SIDRA\Bungeena and Bottlebrush east.sip 8000272, TRANSPORT &TRAFFIC PLANNING ASSOCIATES, SINGLE ----

SIDRA

Bundeena Road and Bottlebrush Drive East Existing PM Peak Giveway / Yield (Two-Way)

Moven	nent Pe	rformance -	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: R	oadNam										
5	Т	89	0.0	0.103	0.3	LOS A	0.7	4.6	0.17	0.00	56.2
6	R	77	0.0	0.103	8.7	LOS A	0.7	4.6	0.17	0.81	48.4
Approa	ch	166	0.0	0.103	4.2	LOS A	0.7	4.6	0.17	0.37	52.3
North: F	RoadNam	าย									
7	L	46	0.0	0.043	8.5	LOS A	0.2	1.4	0.15	0.62	48.3
9	R	1	0.0	0.042	8.8	LOS A	0.2	1.4	0.15	0.72	48.1
Approa	ch	47	0.0	0.043	8.5	LOS A	0.2	1.4	0.15	0.62	48.3
West: R	loadNam	e									
10	L	8	0.0	0.034	8.2	LOS A	0.0	0.0	0.00	1.00	49.0
11	т	57	0.0	0.034	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approad	ch	65	0.0	0.034	1.1	LOS A	0.0	0.0	0.00	0.13	58.3
All Vehi	cles	279	0.0	0.103	4.2	NA	0.7	4.6	0.13	0.36	52.8

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS A. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on the worst delay for any vehicle movement.

Processed: Monday, 27 September 2010 10:59:24 AM SIDRA INTERSECTION 5.0.2.1437 Project: F:\WORK10\10107 - GLENNING VALLEY SUBDIVISION\SIDRA\Bungeena and Bottlebrush east.sip 8000272, TRANSPORT &TRAFFIC PLANNING ASSOCIATES, SINGLE ----

SIDRA

Bundeena Road and Bottlebrush Drive West **Existing AM Peak** Giveway / Yield (Two-Way)

Mover	nent Pe	formance -	Vehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	Distance	Prop. Queued	Effective Stop Rate	Average Speed
East: R	oadNam	veh/h	%	v/c	sec		veh	m		per veh	km/h
5	T	91	0.0	0.049	0.2	LOS A	0.3	2.4	0.17	0.00	56.8
6	R	3	0.0	0.049	8.7	LOSA	0.3	2.4	0.17	1.04	48.8
Approa		94	0.0	0.049	0.5	LOS A	0.3	2.4	0.17	0.04	56.5
North: I	RoadNam	ie									
7	L	1	0.0	0.038	9.5	LOS A	0.2	1.2	0.30	0.55	47.4
9	R	26	0.0	0.037	9.8	LOS A	0.2	1.2	0.30	0.66	47.2
Approa	ch	27	0.0	0.037	9.8	LOS A	0.2	1.2	0.30	0.66	47.2
West: F	RoadNam	e									
10	L	7	0.0	0.030	8.2	LOS A	0.0	0.0	0.00	1.01	49.0
11	Т	52	0.0	0.030	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	59	0.0	0.030	1.0	LOS A	0.0	0.0	0.00	0.13	58.4
All Veh	icles	180	0.0	0.049	2.1	NA	0.3	2.4	0.13	0.16	55.4

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS A. LOS Method for individual vehicle movements: Delay (RTA NSW).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: Monday, 27 September 2010 10:41:24 AM SIDRA INTERSECTION 5.0.2.1437 Copyright © 2000-2010 Akcelik & Associates Pty Ltd SIDRA INTERSECTION 5.0.2.1437 www.sidrasolutions.com Project: F:\WORK10\10107 - GLENNING VALLEY SUBDIVISION\SIDRA\Bungeena and Bottlebrush west.sip 8000272, TRANSPORT & TRAFFIC PLANNING ASSOCIATES, SINGLE

SIDRA

INTERSECTION

Site: EX AM

Bundeena Road and Bottlebrush Drive West Existing PM Peak Giveway / Yield (Two-Way)

Mover	nent Pe	rformance -	Vehicles								
Mov ID) Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: R	loadNam	entral and a series of the property of the pro				(Costa and					
5	Т	63	0.0	0.038	0.3	LOS A	0.3	1.8	0.18	0.00	56.4
6	R	7	0.0	0.038	8.7	LOS A	0.3	1.8	0.18	0.98	48.8
Approa	ch	71	0.0	0.038	1.1	LOS A	0.3	1.8	0.18	0.10	55.5
North: I	RoadNam	ne									
7	L	6	0.0	0.014	8.9	LOS A	0.1	0.5	0.20	0.59	48.0
9	R	6	0.0	0.014	9.2	LOS A	0.1	0.5	0.20	0.67	47.9
Approa	ch	13	0.0	0.014	9.0	LOS A	0.1	0.5	0.20	0.63	48.0
West: F	RoadNam	e									
10	L	16	0.0	0.037	8.2	LOS A	0.0	0.0	0.00	0.95	49.0
11	т	56	0.0	0.037	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	72	0.0	0.037	1.8	LOS A	0.0	0.0	0.00	0.21	57.2
All Veh	icles	155	0.0	0.038	2.1	NA	0.3	1.8	0.10	0.20	55.6

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS A. LOS Method for individual vehicle movements: Delay (RTA NSW).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: Monday, 27 September 2010 10:42:17 AM SIDRA INTERSECTION 5.0.2.1437 Project: F:\WORK10\10107 - GLENNING VALLEY SUBDIVISION\SIDRA\Bungeena and Bottlebrush west.sip 8000272, TRANSPORT &TRAFFIC PLANNING ASSOCIATES, SINGLE ----

SIDRA

Berkey Road and Bundeena Road Existing AM Peak Giveway / Yield (Two-Way)

Moven	nent Pe	rformance -	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: I	RoadNar				COMPANY OF A CASE OF						
1	L	604	0.0	0.340	8.2	LOS A	0.0	0.0	0.00	0.68	49.0
2	Т	28	0.0	0.338	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	633	0.0	0.340	7.8	LOS A	0.0	0.0	0.00	0.65	49.4
North: F	RoadNan	ne						C			
8	Т	38	0.0	0.105	4.1	LOS A	0.7	4.7	0.58	0.00	48.3
9	R	58	0.0	0.105	12.5	LOS A	0.7	4.7	0.58	0.91	45.5
Approa	ch	96	0.0	0.105	9.2	LOS A	0.7	4.7	0.58	0.55	46.6
West: R	RoadNam	Ie									
10	L	13	0.0	0.194	13.4	LOS A	0.9	6.6	0.56	0.75	43.6
12	R	82	0.0	0.194	13.7	LOS A	0.9	6.6	0.56	0.86	43.5
Approa	ch	95	0.0	0.194	13.7	LOS A	0.9	6.6	0.56	0.85	43.5
All Vehi	cles	823	0.0	0.340	8.6	NA	0.9	6.6	0.13	0.66	48.3
								the second s	and a very service of a service of the service of t	the Colorest of the second second second second second	all second and a second second

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS A. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on the worst delay for any vehicle movement.

Processed: Monday, 27 September 2010 10:36:59 AM SIDRA INTERSECTION 5.0.2.1437 Project: F:\WORK10\10107 - GLENNING VALLEY SUBDIVISION\SIDRA\Berkeley and Bundeena.sip 8000272, TRANSPORT &TRAFFIC PLANNING ASSOCIATES, SINGLE -----

SIDRA

Berkey Road and Bundeena Road Existing PM Peak Giveway / Yield (Two-Way)

Mover	nent Pe	rformance -	Vehicles								
Mov ID) Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	RoadNar	Constraint and the second s	Saudin Car				· sources and the second	electric and	CARE PERSON	and the second	Second Second
1	L	193	0.0	0.131	8.2	LOS A	0.0	0.0	0.00	0.73	49.0
2	Т	53	0.0	0.131	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ich	245	0.0	0.131	6.4	LOS A	0.0	0.0	0.00	0.57	51.0
North: I	RoadNan	ıe									
8	Т	24	0.0	0.039	1.0	LOS A	0.2	1.7	0.34	0.00	52.7
9	R	31	0.0	0.039	9.4	LOS A	0.2	1.7	0.34	0.76	48.1
Approa	ch	55	0.0	0.039	5.7	LOS A	0.2	1.7	0.34	0.43	50.0
West: F	RoadNam	е									
10	L	62	0.0	0.640	14.4	LOS A	8.6	60.3	0.63	0.78	42.7
12	R	386	0.0	0.640	14.7	LOS B	8.6	60.3	0.63	0.91	42.7
Approa	ch	448	0.0	0.640	14.7	LOS B	8.6	60.3	0.63	0.89	42.7
All Veh	icles	748	0.0	0.640	11.3	NA	8.6	60.3	0.40	0.75	45.6

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (RTA NSW).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: Monday, 27 September 2010 10:38:16 AM SIDRA INTERSECTION 5.0.2.1437 Project: F:\WORK10\10107 - GLENNING VALLEY SUBDIVISION\SIDRA\Berkeley and Bundeena.sip 8000272, TRANSPORT &TRAFFIC PLANNING ASSOCIATES, SINGLE ----

SIDRA

Enterprise Drive and Berkeley Road Existing AM Peak Giveway / Yield (Two-Way)

Mover	ment Pe	rformance -	Vehicles								
Mov ID) Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	RoadNa		/0	V/C	360		AGU			perven	IXITIBIT
1	L	528	0.0	0.285	7.6	NA ⁹	NA ⁹	NA ⁹	0.00	0.60	49.7
3	R	77	0.0	0.346	27.5	LOS B	1.7	12.2	0.82	1.00	34.1
Approa	ich	605	0.0	0.346	10.1	LOS B	1.7	12.2	0.10	0.65	47.0
East: R	loadNam	е									
4	L	47	0.0	0.036	7.9	LOS A	0.2	1.3	0.20	0.56	48.7
5	Т	343	0.0	0.176	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ich	391	0.0	0.176	1.0	LOS A	0.2	1.3	0.02	0.07	58.3
West: F	RoadNan	ne									
11	т	381	0.0	0.195	8.9	LOS A	0.0	0.0	0.00	0.73	48.1
12	R	97	0.0	0.096	9.7	LOS A	0.5	3.3	0.42	0.70	47.1
Approa	ich	478	0.0	0.195	9.1	LOS A	0.5	3.3	0.09	0.72	47.9
All Vehi	icles	1474	0.0	0.346	7.4	NA	1.7	12.2	0.08	0.52	49.9

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on the worst delay for any vehicle movement.

9 Continuous movement

Processed: Monday, 27 September 2010 10:30:05 AM SIDRA INTERSECTION 5.0.2.1437 Project: F:\WORK10\10107 - GLENNING VALLEY SUBDIVISION\SIDRA\Enterprise and Berkeley.sip 8000272, TRANSPORT &TRAFFIC PLANNING ASSOCIATES, SINGLE -----

SIDRA

Enterprise Drive and Berkeley Road Existing PM Peak Giveway / Yield (Two-Way)

Moven	nent Per	formance -	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back (Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: I	RoadNan	In CHANNEL STATISTIC OF AN ADDRESS OF			000						
1	L	154	0.0	0.083	7.6	NA ⁹	NA ⁹	NA ⁹	0.00	0.60	49.8
3	R	17	0.0	0.189	50.8	LOS D	0.7	5.1	0.92	0.98	25.0
Approa	ch	171	0.0	0.190	11.8	LOS D	0.7	5.1	0.09	0.64	45.4
East: R	oadName)									
4	L	32	0.0	0.031	9.0	LOS A	0.1	1.0	0.40	0.63	47.6
5	Т	328	0.0	0.168	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	360	0.0	0.168	0.8	LOS A	0.1	1.0	0.04	0.06	58.6
West: R	loadNam	e									
11	т	598	0.0	0.307	8.9	LOS A	0.0	0.0	0.00	0.73	48.1
12	R	343	0.0	0.335	10.2	LOS A	2.1	14.4	0.49	0.75	46.9
Approa	ch	941	0.0	0.335	9.3	LOS A	2.1	14.4	0.18	0.74	47.7
All Vehi	cles	1472	0.0	0.335	7.5	NA	2.1	14.4	0.13	0.56	49.7

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS D. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on the worst delay for any vehicle movement.

9 Continuous movement

Processed: Monday, 27 September 2010 10:32:07 AM SIDRA INTERSECTION 5.0.2.1437 Project: F:\WORK10\10107 - GLENNING VALLEY SUBDIVISION\SIDRA\Enterprise and Berkeley.sip 8000272, TRANSPORT &TRAFFIC PLANNING ASSOCIATES, SINGLE -----

SIDRA

Wyong Road and Bundeena Road Existing AM Peak Roundabout

Movem	nent Pe	erformance -	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: V	Nyong F	Road	- Service - Service								
1	L	31	0.0	0.623	6.4	LOS A	6.3	43.9	0.46	0.56	49.5
2	Т	1676	0.0	0.618	5.3	LOS A	6.3	43.9	0.47	0.48	49.9
3	R	5	0.0	0.585	12.2	LOS A	6.2	43.3	0.48	0.81	46.8
Approac	ch	1712	0.0	0.618	5.3	LOS A	6.3	43.9	0.47	0.48	49.8
East: Ki	ngsford	Smith Drive			10203816						
4	L	29	0.0	0.172	7.4	LOS A	0.8	5.8	0.50	0.66	49.0
5	т	95	0.0	0.172	6.5	LOS A	0.8	5.8	0.50	0.58	49.2
6	R	33	0.0	0.172	13.3	LOS A	0.8	5.8	0.50	0.91	45.6
Approac	h	157	0.0	0.172	8.1	LOS A	0.8	5.8	0.50	0.67	48.3
North: W	Vyong F	load									
7	L	14	0.0	0.217	5.7	LOS A	1.5	10.3	0.14	0.51	51.3
8	т	627	0.0	0.216	4.5	LOS A	1.5	10.3	0.14	0.38	52.4
9	R	18	0.0	0.216	11.3	LOS A	1.4	10.1	0.15	0.89	46.7
Approac	h	659	0.0	0.216	4.7	LOS A	1.5	10.3	0.14	0.40	52.2
West: Bi	undeen	a Road									
10	L	97	0.0	0.136	9.4	LOS A	0.9	6.0	0.76	0.83	47.1
11	Т	8	0.0	0.062	9.6	LOS A	0.3	2.4	0.74	0.81	46.3
12	R	22	0.0	0.062	16.4	LOS B	0.3	2.4	0.74	0.93	42.7
Approac	:h	127	0.0	0.136	10.7	LOS B	0.9	6.0	0.76	0.85	46.2
All Vehic	cles	2655	0.0	0.618	5.6	LOS A	6.3	43.9	0.40	0.49	50.1

Level of Service (Aver. Int. Delay): LOS A. Based on average delay for all vehicle movements. LOS Method: Delay (RTA NSW). Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on the worst delay for any vehicle movement. Roundabout Capacity Model: SIDRA Standard.

Processed: Monday, 27 September 2010 9:56:43 AM SIDRA INTERSECTION 5.0.2.1437 Project: F:\WORK10\10107 - GLENNING VALLEY SUBDIVISION\SIDRA\Wyong and Bundeena.sip 8000272, TRANSPORT &TRAFFIC PLANNING ASSOCIATES, SINGLE Copyright © 2000-2010 Akcelik & Associates Pty Ltd SIDRA INTERSECTION

Wyong Road and Bundeena Road Existing PM Peak Roundabout

Moven	nent Pe	rformance -	Vehicles	hi den i di s							
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back (Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: \	Wyong R	load								Statistical.	
1	L	31	0.0	0.325	6.3	LOS A	2.2	15.7	0.36	0.57	50.0
2	Т	817	0.0	0.325	5.1	LOS A	2.2	15.7	0.37	0.47	50.6
3	R	3	0.0	0.316	12.1	LOS A	2.2	15.5	0.38	0.86	46.8
Approa	ch	851	0.0	0.325	5.2	LOS A	2.2	15.7	0.37	0.47	50.6
East: Ki	ingsford	Smith Drive									
4	L	22	0.0	0.201	11.3	LOS A	1.1	7.8	0.75	0.87	45.6
5	Т	42	0.0	0.201	10.3	LOS A	1.1	7.8	0.75	0.84	45.9
6	R	47	0.0	0.202	17.2	LOS B	1.1	7.8	0.75	0.96	42.5
Approa	ch	112	0.0	0.202	13.4	LOS B	1.1	7.8	0.75	0.90	44.3
North: V	Wyong R	oad									
7	L	79	0.0	0.622	5.8	LOS A	7.0	48.7	0.26	0.50	50.5
8	т	1747	0.0	0.623	4.6	LOS A	7.0	48.8	0.28	0.39	51.3
9	R	101	0.0	0.624	11.5	LOS A	7.0	48.8	0.29	0.80	46.6
Approa	ch	1927	0.0	0.623	5.1	LOS A	7.0	48.8	0.28	0.42	51.0
West: B	undeena	Road									
10	L	75	0.0	0.073	7.3	LOS A	0.4	2.7	0.54	0.64	48.4
11	Т	18	0.0	0.056	6.8	LOS A	0.3	1.9	0.55	0.61	48.4
12	R	26	0.0	0.056	13.6	LOS A	0.3	1.9	0.55	0.84	45.1
Approad	ch	119	0.0	0.073	8.6	LOS A	0.4	2.7	0.54	0.68	47.6
All Vehi	cles	3008	0.0	0.623	5.6	LOS A	7.0	48.8	0.33	0.46	50.4

Level of Service (Aver. Int. Delay): LOS A. Based on average delay for all vehicle movements. LOS Method: Delay (RTA NSW). Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on the worst delay for any vehicle movement. Roundabout Capacity Model: SIDRA Standard.

Processed: Monday, 27 September 2010 9:56:44 AM SIDRA INTERSECTION 5.0.2.1437 Project: F:\WORK10\10107 - GLENNING VALLEY SUBDIVISION\SIDRA\Wyong and Bundeena.sip 8000272, TRANSPORT &TRAFFIC PLANNING ASSOCIATES, SINGLE SIDRA ---

Wyong Road and Bundeena Road Post Development AM Peak Roundabout

Movem	nent Pe	erformance -	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back (Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: \	Nyong F		and the second			and the second second					
1	L	44	0.0	0.660	6.9	LOS A	6.7	46.7	0.56	0.61	49.0
2	т	1676	0.0	0.657	5.8	LOS A	6.7	46.7	0.57	0.53	49.1
3	R	5	0.0	0.658	12.8	LOS A	6.6	46.4	0.59	0.83	46.5
Approac	ch	1725	0.0	0.657	5.9	LOS A	6.7	46.7	0.57	0.53	49.1
East: Ki	ngsford	Smith Drive									
4	L	29	0.0	0.181	7.7	LOS A	0.9	6.3	0.54	0.68	48.8
5	т	95	0.0	0.181	6.7	LOS A	0.9	6.3	0.54	0.61	48.9
6	R	33	0.0	0.181	13.6	LOS A	0.9	6.3	0.54	0.92	45.4
Approac	ch	157	0.0	0.181	8.3	LOS A	0.9	6.3	0.54	0.69	48.1
North: V	Vyong R	load									
7	L	14	0.0	0.253	5.8	LOS A	1.8	12.6	0.23	0.52	50.8
8	т	627	0.0	0.252	4.6	LOS A	1.8	12.6	0.23	0.40	51.6
9	R	85	0.0	0.252	11.5	LOS A	1.8	12.4	0.24	0.81	46.5
Approac	h	726	0.0	0.252	5.4	LOS A	1.8	12.6	0.23	0.45	50.9
West: B	undeena	a Road									
10	L	189	0.0	0.282	9.7	LOS A	1.9	13.1	0.81	0.85	46.8
11	Т	28	0.0	0.151	9.8	LOS A	0.9	6.0	0.77	0.85	46.3
12	R	42	0.0	0.151	16.6	LOS B	0.9	6.0	0.77	0.96	42.8
Approac	h	260	0.0	0.282	10.8	LOS B	1.9	13.1	0.80	0.87	46.0
All Vehic	les	2868	0.0	0.657	6.3	LOS A	6.7	46.7	0.51	0.55	49.2

Level of Service (Aver. Int. Delay): LOS A. Based on average delay for all vehicle movements. LOS Method: Delay (RTA NSW). Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on the worst delay for any vehicle movement. Roundabout Capacity Model: SIDRA Standard.

Processed: Monday, 27 September 2010 9:56:44 AM SIDRA INTERSECTION 5.0.2.1437 Project: F:\WORK10\10107 - GLENNING VALLEY SUBDIVISION\SIDRA\Wyong and Bundeena.sip 8000272, TRANSPORT &TRAFFIC PLANNING ASSOCIATES, SINGLE

Wyong Road and Bundeena Road Post Development PM Peak Roundabout

Mover	nent P	erformance -	Vehicles								
Mov ID		Demand	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: \	Wyong				000		VCII			Del ven	NI III
1	L	56	0.0	0.372	7.0	LOS A	2.7	18.8	0.49	0.63	49.3
2	Т	817	0.0	0.372	5.9	LOS A	2.7	18.8	0.50	0.54	49.6
3	R	3	0.0	0.395	12.8	LOS A	2.6	18.3	0.51	0.88	46.3
Approac	ch	876	0.0	0.372	6.0	LOS A	2.7	18.8	0.50	0.54	49.6
East: Ki	ngsford	Smith Drive									
4	L	22	0.0	0.287	12.5	LOS A	1.7	12.0	0.81	0.91	44.7
5	Т	67	0.0	0.288	11.5	LOS A	1.7	12.0	0.81	0.89	44.9
6	R	47	0.0	0.287	18.4	LOS B	1.7	12.0	0.81	0.98	41.8
Approac	h	137	0.0	0.287	14.0	LOS B	1.7	12.0	0.81	0.92	43.7
North: W	Vyong F	Road									
7	L	79	0.0	0.686	6.1	LOS A	8.5	59.5	0.40	0.51	49.8
8	Т	1747	0.0	0.687	4.9	LOS A	8.5	59.5	0.41	0.43	50.2
9	R	217	0.0	0.686	11.9	LOS A	8.5	59.4	0.43	0.74	46.4
Approac	h	2043	0.0	0.687	5.7	LOS A	8.5	59.5	0.41	0.46	49.7
West: Bu	undeen	a Road									
10	L	148	0.0	0.150	7.4	LOS A	0.8	5.8	0.58	0.65	48.2
11	Т	34	0.0	0.102	6.9	LOS A	0.5	3.6	0.59	0.63	48.2
12	R	42	0.0	0.102	13.8	LOS A	0.5	3.6	0.59	0.88	45.0
Approac	h	224	0.0	0.150	8.6	LOS A	0.8	5.8	0.58	0.69	47.5
Ali Vehic	les	3280	0.0	0.687	6.3	LOS A	8.5	59.5	0.46	0.52	49.2

Level of Service (Aver. Int. Delay): LOS A. Based on average delay for all vehicle movements. LOS Method: Delay (RTA NSW). Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on the worst delay for any vehicle movement. Roundabout Capacity Model: SIDRA Standard.

Processed: Monday, 27 September 2010 9:56:45 AM SIDRA INTERSECTION 5.0.2.1437 Copyright © 2000-2010 Akcelik & Associates Pty Ltd SIDRA SIDRA INTERSECTION 5.0.2.1437 WWW.sidrasolutions.com Project: F:\WORK10\10107 - GLENNING VALLEY SUBDIVISION\SIDRA\Wyong and Bundeena.sip INTERSECTION 8000272, TRANSPORT & TRAFFIC PLANNING ASSOCIATES, SINGLE

°.